博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ 3522 Slim Span 最小差值生成树
阅读量:5919 次
发布时间:2019-06-19

本文共 3344 字,大约阅读时间需要 11 分钟。

Slim Span

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://poj.org/problem?id=3522

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {

v1v2, …, vn} and E is a set of undirected edges {
e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph 
G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {

v1v2v3v4} and five undirected edges {
e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of 
G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 51 2 31 3 51 4 62 4 63 4 74 61 2 101 3 1001 4 902 3 202 4 803 4 402 11 2 13 03 11 2 13 31 2 22 3 51 3 65 101 2 1101 3 1201 4 1301 5 1202 3 1102 4 1202 5 1303 4 1203 5 1104 5 1205 101 2 93841 3 8871 4 27781 5 69162 3 77942 4 83362 5 53873 4 4933 5 66504 5 14225 81 2 12 3 1003 4 1004 5 1001 5 502 5 503 5 504 1 1500 0

Sample Output

1200-1-110168650

HINT

 

题意

 给你一个无向图,然后让你找到一个生成树,使得这棵树最大边减去最小边的差值最小

题解:

跑kruskal,我们枚举最小边之后,我们就可以跑kruskal

由于kruskal是排序之后,贪心去拿的,那么最后加入的边一定是最大边

然后我们注意更新答案就好了

代码

#include
#include
#include
#include
using namespace std;#define maxn 100005struct edge{ int u,v,w;};edge E[maxn];int fa[maxn];int n,m;int ans;bool cmp(edge a,edge b){ return a.w

 

转载地址:http://bcfvx.baihongyu.com/

你可能感兴趣的文章
Typora学习笔记
查看>>
快速排序 Gnu glibc qsort
查看>>
日志组件log4net学习总结
查看>>
复合数据类型,英文词频统计
查看>>
EncodingFilter
查看>>
Spring框架-IOC/DI详细学习
查看>>
LeetCode-114-Flatten Binary Tree to Linked List
查看>>
等你说爱我
查看>>
VC中的常用的20个方法
查看>>
maven assembly plugin使用
查看>>
8.3、文件内容处理
查看>>
SpringMVC与Mybatis框架整合遇到的坑(转)
查看>>
序列图(转)
查看>>
zoj 1067
查看>>
c 的ui
查看>>
gmock学习02---编写自己的Matcher与如何让编译器识别被mock的重载函数
查看>>
Unsupported major.minor version 51.0
查看>>
[Linux] PHP程序员玩转Linux系列-升级PHP到PHP7
查看>>
[Linux] nginx管理员指南基本功能
查看>>
windows安装git和环境变量配置
查看>>